Vittorio Fortino
Academy Research Fellow
Associate Professor (tenure track) of Health Bioinformatics
Institute of Biomedicine, School of Medicine, Faculty of Health Sciences
[email protected] | +358 50 326 6148
I hold a Bachelor’s and Master’s degree in Computer Science, a PhD in Bioinformatics, and a Docentship in Health Bioinformatics. My research is centered on developing and implementing machine learning, heuristic optimization, and network data mining algorithms to tackle the principal computational challenges inherent in the precision medicine (PM) approach. PM is dedicated to the integration of molecular markers with conventional clinical data to customize medical treatment and enhance patient outcomes. My team’s current projects include: 1) patient stratification utilizing both single- and multi-view datasets, facilitated by deep learning, dimensionality reduction, and knowledge-driven clustering analyses; 2) biomarker identification through the analysis of extensive genomics data, applying metaheuristic techniques for feature selection, and; 3) the creation of network data mining algorithms aimed at discovering drug targets and repurposing existing drugs. Our work is pivotal in translating complex biological data into actionable insights for PM, ultimately aiming to optimize individual patient care.
Research groups
Projects
Keywords
Publications
41/41 items-
COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms
Rintala, Teemu J; Fortino, Vittorio. 2024. PLoS computational biology. 20: . e1012275 A1 Journal article (refereed), original research -
Differential expression analysis identifies a prognostically significant extracellular matrix–enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma
Jokelainen, Otto; Rintala, Teemu J; Fortino, Vittorio; Pasonen-Seppänen, Sanna; Sironen, Reijo; Nykopp, Timo K. 2024. Scientific reports. 14: A1 Journal article (refereed), original research -
Enhancing prediction accuracy of coronary artery disease through machine learning-driven genomic variant selection
Alireza, Z.; Maleeha, M.; Kaikkonen, M.; Fortino, V.. 2024. Journal of translational medicine. 22: . 356 A1 Journal article (refereed), original research -
Integrative network analysis suggests prioritised drugs for atopic dermatitis
Federico, Antonio; Möbus, Lena; Al-Abdulraheem, Zeyad; Pavel, Alisa; Fortino, Vittorio; del Giudice, Giusy; Alenius, Harri; Fyhrquist, Nanna; Greco, Dario. 2024. Journal of translational medicine. 22: . 64 A1 Journal article (refereed), original research -
Multi-objective genetic algorithm for multi-view feature selection
Imani, Vandad; Sevilla-Salcedo, Carlos; Moradi, Elaheh; Fortino, Vittorio; Tohka, Jussi; for the Alzheimer’s Disease Neuroimaging Initiative. 2024. Applied soft computing. 167: . 112332 A1 Journal article (refereed), original research -
Multi-task deep latent spaces for cancer survival and drug sensitivity prediction
Rintala, Teemu J; Napolitano, Francesco; Fortino, Vittorio. 2024. Bioinformatics. 40: ii182-ii189 A1 Journal article (refereed), original research -
Optimizing Feature Selection for Binary Classification with Noisy Labels: A Genetic Algorithm Approach
Imani, Vandad; Moradi, Elaheh; Sevilla-Salcedo, Carlos; Fortino, Vittorio; Tohka, Jussi. Teoksessa: Daimi, Kevin; Al Sadoon, Abeer(toim.) , 2024. Proceedings of the Second International Conference on Advances in Computing Research (ACR’24). s. 392-403. A4 Conference proceedings -
Translatome profiling reveals Itih4 as a novel smooth muscle cell–specific gene in atherosclerosis
Ravindran, Aarthi; Holappa, Lari; Niskanen, Henri; Skovorodkin, Ilya; Kaisto, Susanna; Beter, Mustafa; Kiema, Miika; Selvarajan, Ilakya; Nurminen, Valtteri; Aavik, Einari; Aherrahrou, Rédouane; Pasonen-Seppänen, Sanna; Fortino, Vittorio; Laakkonen, Johanna P; Ylä-Herttuala, Seppo; Vainio, Seppo; Örd, Tiit; Kaikkonen, Minna U. 2024. Cardiovascular research. 120: 869-882 A1 Journal article (refereed), original research -
Triple and quadruple optimization for feature selection in cancer biomarker discovery
Cattelani, L; Fortino, V. 2024. Journal of biomedical informatics. 159: A1 Journal article (refereed), original research -
Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta
Chortarea, S; Gupta, G; Saarimäki, LA; Netkueakul, W; Manser, P; Aengenheister, L; Wichser, A; Fortino, V; Wick, P; Greco, D; Buerki-Thurnherr, T. 2023. Environment international. 177: . 108015 A1 Journal article (refereed), original research