Tarkenna hakuasi

Carsten Carlberg (carsten.carlberg@uef.fi)

The research of Carsten Carlberg is directed to gene regulation and epigenetics by vitamin D.
Over 245 of his publications are listed in the Science Citation Index. These have been cited more than 11,000 times leading to h-index of 58 (Web of Science/Publons). So far he finished the supervision of 13 post-doctoral fellows, 19 doctoral students (18 PhD, 1 MD) and 32 MSc students.
Carsten Carlberg published textbooks on ”Mechanisms of Gene Regulation”, ”Nutrigenomics”, ”Human Epigenomics” and ”Cancer Biology”.

Diana Schenkwein (diana.schenkwein@uef.fi)

Designer gene transfer tools (vectors) are key in treating different inherited or acquired diseases safely with gene therapy. With the help of multilevel-optimized vectors based on the Human Immunodeficiency Virus 1 (HIV-1) and CRISPR/Cas, we pursue to develop an effective and safe gene therapy treatment to familial hypercholesterolemia and heart failure, both important diseases in Finland but also leading causes of deaths worldwide. Our research also includes the creation of safe and optimally efficient CAR T cells for cell therapy of cancer, studying the role of nucleoli in health and disease, characterizing genome-wide effects of transgene integration, and assessing the safety of gene transfer. We have shown that the natural tendency lentivirus vectors (LVs) to integrate in a nearly random manner can be modified so that they are less likely to destroy important cellular genes or cause other unwanted side-effects. The modified vectors can also be harnessed for the delivery of desired proteins into target cells. Our approaches to improve the safety and efficiency of gene therapy treatments include multi-level targeting of LVs to the cells and tissues most relevant to achieve a curative outcome and through minimizing the risks for undesired side effects, including insertional mutagenesis and immunogenicity.

I am part of the The GeneCellNano consortium funded by the Academy of Finland’s Flagship Programme.

Kirsi Ketola (kirsi.ketola@uef.fi)

We study the molecular mechanisms of cancer cell plasticity and prostate cancer treatment resistance including neuroendocrine transdifferentiation and cellular neuroplasticity programs in prostate cancer. We aim at identifying novel therapeutic targets and biomarkers for neuroendocrine prostate cancer and ways to bring treatment resistant prostate cancer cells back to antiandrogen therapy sensitive state. We employ several genome-wide and cellular imaging methods such as RNA-seq, ATAC-seq, ChIP-seq and live-cell high-content and -throughput imaging and drug screening to understand and target through precision medicine approaches the cellular plasticity stages and epigenetic reprogramming in cancer treatment resistance. We also utilize patient-derived organoids of prostate and neuroendocrine prostate cancer patients as well as patient blood samples on different treatment stages to identify and validate our findings. Our recent identified novel players highly overexpressed after antiandrogen therapy include neuroplasticity protein DPYSL5, which regulates antiandrogen enzalutamide resistance, chromatin reprogramming and neuronal cell phenotype in prostate cancer, Fanconi anemia pathway and FANCI which plays a role in carboplatin resistance in prostate cancer as well as a stem cell transcription factor which turns on cancer stem cell and resistance program in androgen-independent prostate cancer. By inhibiting these cellular plasticity programs we believe we can target the development of aggressive forms of cancer.

Find Ketola Lab pages: https://uefconnect.uef.fi/en/group/cancer-cell-plasticity-ketola-lab/

Leena Latonen (leena.latonen@uef.fi)

Syövän stressivasteiden tutkimuksessa selvitämme niitä molekyyli-, solu- ja kudostason mekanismeja, jotka aikaansaavat syöpäsolujen kohonneen sietokyvyn stressiä kohtaan. Tutkimme mm. molekyylireittejä, jotka johtavat syöpä- ja hermosolujen erilaistiin kykyihin käsitellä proteiini- ja RNA-kertymiä, sekä syövän kykyä muodostaa vastustuskyky lääkeaineille. Tutkimme myös syövän kasvutapoja kudoksessa ja yhdistämme tätä tietoa syöpäsolujen molekyylitietoihin ymmärtääksemme paremmin niitä mekanismeja, joiden avulla syöpäsolut selviävät monenlaisten stressien ristipaineessa. Kudosbiologian yhteistyöprojekteissamme etsimme parempia tapoja kuvantaa, visualisoida ja analysoida kvantitatiivisesti histologiaa digitaalisen patologian, koneoppimisen ja tekoälyn keinoin.

Molekyylimekanismien tunteminen ja niiden yhdistäminen kudostason seurauksiin on tärkeää parempien hoitojen kehittämiseksi lukuisia sairauksia vastaan. Tarkempi ymmärrys solujen stressivasteiden toiminnasta mahdollistaa uusien lääke- ja terapiakohteiden tunnistamisen. Jos voimme estää syöpäsolujen lisääntynyttä kykyä puskuroida stressiä, voimme löytää keinoja tuhota syöpäsolut. Toisaalta taas aktivoimalla tällaisia reittejä puskurikyvyttömissä soluissa, voimme estää solu- ja kudosstressin haittavaikutuksia, kuten solukuolemaa hermorappeumassa.

Tutkimusryhmän nettisivut:
https://sites.uef.fi/cancer-stress-biology-latonen/

Minna Niittykoski (minna.niittykoski@uef.fi)

I am senior scientist (Docent/Adjunct Professor) and an initiator of the brain tumor research line which utilizes patient material. The current interest involve malignant brain tumors, particularly glioblastoma. We are determing its characteristics and aiming for the discovery of new cancer biomarkers. In addition, we are using multiple approaches to modeling disease. I have coordinating role in the study which is working in the network manner. More detailed information of biomarkers may benefit patient diagnostics and help to select and design better and more personalized therapies in the future.