Refine your search

Joonas  Kosonen

Joonas Kosonen

Doctoral Researcher

Department of Technical Physics, Faculty of Science, Forestry and Technology | +358 50 341 5875

050 3415875
050 341 5875
+358 50 341 5875
+35850 341 5875
050 3415 875
+358 50 3415 875
+35850 3415 875
+358 50 3415875
+35850 3415875

One of the hallmarks of osteoarthritis progression is cartilage degeneration, which is partly driven by cartilage cells. However, the mechanisms triggering the cell-driven cartilage degeneration and tissue adaptation are poorly understood. Thus, in my Phd work we investigate how different cell-level mechanisms contribute to the cartilage degradation and osteoarthritis progression in injured cartilage.

To provide insight to the cartilage degradation mechanisms, we implement computational models to assess cell-driven cartilage degeneration after biomechanical (excessive loading triggered degradation) and biochemical (pro-inflammatory cytokine, such as interleukin-1 (IL-1), triggered degradation) stimulus. As shown by previous experiments, these factors may cause cell death, oxidative stress, and cell damage, promoting cartilage proteoglycan (PG) degeneration. These degenerative factors will be simulated first with tissue-level models. With the new numerical model, we are also going to assess potential intervention strategies to mitigate cell death and cartilage degradation as well as potential tissue recovery. The model is going to be calibrated against new in vitro biological experiments.

Finally, the new cell-driven tissue-level degradation model will be augmented into the joint-level models of articular cartilage to estimate patients’ cartilage health. Improved joint-level models could supplement the current models by providing novel tools to better estimate cartilage adaptation as well as avail development of new intervention strategies.


5 items