Tanja Tarvainen
Professor
Professor on Computational Imaging and Modelling
Department of Technical Physics, Faculty of Science, Forestry and Technology
[email protected] | +358 40 355 2310
The team of Professor Tanja Tarvainen investigates and develops computational methods for optical and ultrasonic inverse problems such as tomographic imaging and therapy in the framework of Bayesian inverse problems. The tomographic methods include purely light based modalities such as diffuse optical tomography and coupled physics imaging such as photoacoustic tomography. In addition, modelling and computational methods for light transport and ultrasound propagation are studied, and prototype instrumentation for the techniques are developed.
Research groups
Research groups
- Computational Physics and Inverse Problems Group
- Biomedical Optical Imaging and Ultrasound Laboratory (OPUS)
- Center for Photonics Sciences
- Visiting Professor, Department of Computer Science, University College London, UK
- Collaborator in CUQI – Computational Uncertainty Quantification for Inverse Problems, DTU Compute, Denmark
Projects
- Flagship of Advanced Mathematics for Sensing, Imaging and Modelling (FAME), Research Council of Finland’s Flagship, 2024-2031
- Doctoral Education Pilot for Mathematics of Sensing Imaging and Modelling, Doctoral Education Pilot of the Ministry of Education and Culture, 2024-2027
- Quantitative Tomography Using Coupled Physics of Waves (QUANTOM), ERC-CoG project, 2021-2025
- COmputatioNal Imaging as a training Network for Smart biomedical dEvices (CONcISE), Marie Skłodowska-Curie Actions – Doctoral Networks, 2023-2027
- Centre of Excellence in Inverse Modelling and Imaging, Academy of Finland, 2018-2025
- PREIN – the Finnish Flagship on Photonics Research and Innovation
- Nanotheranostics based on light, RADDESS Academy Programme, Academy of Finland, 2018-2021
Research interests
- ValoMC – a Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue
- Inverse problems
- Uncertainty quantification
- Optical tomography
- Photoacoustic tomography
- Radiative transfer
- PhD thesis: Computational methods for light transport in optical tomography
Teaching Activities
- Current teaching: Optimisation
- Past teaching (lectures): Finite element methods, Modelling II, Tieteellinen viestintä fysiikassa
- Past teaching (exercises): Statistical inverse problems, Mathematical modelling, Finite element methods, Optimization, Estimation theory, Modelling II, Physics A, Physics III
Files
3 itemsPublications
127/127 items-
A Bayesian approach for consistent reconstruction of inclusions
Afkham, B. M.; Knudsen, K.; Rasmussen, A. K.; Tarvainen, T.. 2024. Inverse problems. 40: . 045004 A1 Journal article (refereed), original research -
Estimating absorption and scattering in quantitative photoacoustic tomography with an adaptive Monte Carlo method for light transport
Hänninen, Niko; Pulkkinen, Aki; Arridge, Simon; Tarvainen, Tanja. 2024. Inverse problems and imaging. 18: 1052-1077 A1 Journal article (refereed), original research -
Model-Based Reconstructions for Quantitative Imaging in Photoacoustic Tomography
Hauptmann, Andreas; Tarvainen, Tanja. Teoksessa: Xia, Wenfeng(toim.) , 2024. Biomedical Photoacoustics : Technology and Applications. s. 133-153. Springer D2 Article in a professional book (incl. an introduction by the editor) -
Single-stage approach for estimating optical parameters in spectral quantitative photoacoustic tomography
Suhonen, Miika; Pulkkinen, Aki; Tarvainen, Tanja. 2024. Journal of the optical society of america a: optics image science and vision. 41: 527-542 A1 Journal article (refereed), original research -
Stochastic Gauss-Newton method for estimating absorption and scattering in optical tomography with the Monte Carlo method for light transport
Kangasniemi, Jonna; Mozumder, Meghdoot; Pulkkinen, Aki; Tarvainen, Tanja. 2024. Biomedical optics express. 15: 4925-4942 A1 Journal article (refereed), original research -
Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography
Goh, Hwan; Sahlström, Teemu; Tarvainen, Tanja. Teoksessa: Bubba, Tatiana A(toim.) , 2024. Data-driven Models in Inverse Problems. s. 413-436. De Gruyter A3 Book section, Chapters in research books -
Assembly of fluorophore J-aggregates with nanospacer onto mesoporous nanoparticles for enhanced photoacoustic imaging
Xu, Wujun; Leskinen, Jarkko; Sahlström, Teemu; Happonen, Emilia; Tarvainen, Tanja; Lehto, Vesa-Pekka. 2023. Photoacoustics. 33: A1 Journal article (refereed), original research -
Background-oriented schlieren sensitivity in terms of geometrical parameters of measurement setup
Koponen, Eero; Leskinen, Jarkko; Tarvainen, Tanja; Pulkkinen, Aki. 2023. Journal of the acoustical society of america. 154: 3726-3736 A1 Journal article (refereed), original research -
Deep learning in photoacoustic tomography utilizing variational autoencoders
Sahlström, Teemu; Tarvainen, Tanja. Teoksessa: Kim, Chulhong; Laufer, Jan; Ntziachristos, Vasilis: Zemp, Roger J(toim.) , 2023. Opto-Acoustic Methods and Applications in Biophotonics VI. s. . SPIE A4 Conference proceedings -
Diffuse optical tomography setup using a nanosecond laser
Mozumder, Meghdoot; Leskinen, Jarkko; Tarvainen, Tanja. Teoksessa: Contini, Davide; Hoshi, Yoko; O'Sullivan, Thomas D(toim.) , 2023. Diffuse Optical Spectroscopy and Imaging IX. s. 1-3. A4 Conference proceedings